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1. INTRODUCTION, STATEMENT OF THEOREMS, AND EXAMPLES

The main purpose of this article is to show that the dominated integral
introduced in [9] is a natural and powerful tool in the study of the application
of quadrature formulas to the numerical evaluation of improper Riemann
integrals. More accurately, we show that a functionlon (0, I] is dominantly
integrable if and only if every sequence of quadrature formulas, of some
reasonable, natural form, when applied to f, converges to (the improper
Riemann integral) f~+f(t) dr. The types of sequences of quadrature formulas
which we shall treat in examples include all sequences of compound rules on
[0, I] not involving f(O), and integrating I exactly, and sequences of n-point
Gauss-type quadrature formulas, for n I. 2..... This article was stimulated
by the work of Davis and Rabinowitz [1], who showed that quadrature
formulas whose use can be justified for the evaluation of proper Riemann
integrals can be sometimes also used for the evaluation of improper Riemann
integrals. Work in this area was continued by other authors (cf. [3,4,8, 10».

By Theorem 3 of [9] a number of properties are equivalent to dominant
integrability. Perhaps the simplest of these equivalences is thatlis dominantly
integrable if and only ifl is Riemann integrable on each [a, b] C (0, I], and
there exists a function h, monotone nonincreasing and improperly Riemann
integrable on (0, 1] such that her) ?:- I f(t)! throughout (0, I]. Theorem 1
below gives yet another property equivalent to dominant integrability, one
which is useful in the numerical evaluation of f~tJ(t) dr, the improper
Riemann integral off on (0, 1].
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Let 0 8 I, and let iI be a positive integer. Let f be a complex function
on (0, I]. We shall often consider sums

where

and
o

Ii I, .

I"

1.2.... II.

(! )

TllEORPvI I. A complex jimclion f on (0, I] is dominalll it inregrable ijand
011/.1' if there exisis a complex lIumber I such that for each 8. 0 8 I (or li)r
some .fixed 81 ' 0 8) I) alld each (' 0 Ihere exists an III m( 8. E) ()

(an m mid 0) such Ihat

/ L jh)(/,
I

(2)

whenever (I) holds (whenever (I) holel\' wilh 8 1 re/l/acing 0) and each
t, I. J m. Further, such an I is necessari/)' J~ /(t) dt.

EXAMPLE I. Let f be a complex function on (0. I]. and let 0
Let (RnU))~~l be a sequence of Riemann sums:

I.

Rn(f)
"L I(T;"))(t)"J

j-,I

where 0 l(rI)

"
1, for n 1, 2.... :

lim max (I;")
n ') 1 i-· fl

t;"~ ) 0: and Illax(t;n~ . MI"I)

lilll RII(l)
11' '

for i 1.2. .. ., iI. and II 1,2, .... Then

.C fIt) dt

iffis dominantly integrable. In particular. for such anI

. (I "~I,(·i---,(,1/2)\.I)lim- L./ .
1/- .• -/ 11 1-=-" J

.1I f(l)dt.
·'0

By Example 2 below. if (R,,(I));'~l is any sequence of compound rules on
[0, I] not involving/(O). and integrating I exactly. we have (3) wheneverfis
dominantly integrable. Also we shall discuss. for suitable functions g.

formulas R ll for which R,JI) --> J:)cfdg, the improper Riemann-Stieltjes
integral ()ff(~r;. wheneverfis dominantly integrable.
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DEFINITION I. Let g be a fixed complex function on [0, I], bounded but
not constant there, having the property that Riemann~Stieltjes integral
f~fdg exists for every complex function /: Riemann integrable on [0. I].'
Let 6. ° 6 < I, be fixed, and let din) map the set of positive integers into
itself. For /I I, 2, .. ., let cj"),) 1,2,.. , d(n). be given complex numbers.
and let Ij") U 0. I. .... d(n)) and 7;") ( i I, 2..... din)) be given mils
satisfying

°
tin) t ("I I (~(~() I:0 1

and

( inl 61;")) iii) t i,d ) I, 2..... 11(11).max Ii 1 T.i I

We also assume the existence of positive constants B I and /1,f such that
B implies i cj") < M, for 11 c. 1,2, ... ;) 1,2.... , d(/I). For n I,

2, ... , consider the function rf>" with domain the set of all complex functions h
011 (0. J]. defined for every such h by

d(j,)

rf>,,(h)-c I dnlh( 7 ;"»)(/;")
i -~l

(3a)

We assume, finally, that for every complex function l Riemann integrable
on [0, 1], rf>Jf) ---+ f~fdg. Under the above conditions we shall call «b,J~l
a "Q-sequence" (Q for "quadrature") or a Q-sequencc corresponding to g.

THEOREM 2. A necessary (sufficient) conditioll for the existence oj a Q­
sequence corresponding to a given complex/ilnction g as in the first selltellce of
Definition 1 is that g be continuous and oj bounded variation on [0, I] (be
absolutely continuous on [0, JD, and satisf!, a LliJschit:: condition all some

[0. 8]. ° 8 1.

THEOREM 3. A complex limction f all (0, I] is dominantly integrable if
JI~IJ(X) dx converges, and, for each Q-sequence (rf>II)~] corresponding 10

g(t) t, rf>nU) converges to f~ r(t) dt. Converselv, iff is dOlllinantlr inle­
grable, then, for each g as in the first sentence oj Definition I. and. for each
Q-sequence (rf>1I)~_1 corresponding to it. J~ f(t) dg(t) converges. and

!J>n(f) - + ( f(t) ((-S(t) .
• 0

1 A necessary (sufficient) condition for g to have this property is that g be continuous
and of bounded variation on [0, 1) (be absolutely continuous on [0, 1). Cf. the proof of
Theorem 2.
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EXAMPLE 2. Suppose (RnU»;"~J is a sequence of compound rules on
[0, I] not involving f(O), and integrating 1 exactly, namely,

1/1

R,,(f) I I \\(iI'j((k
I.. " 1'= 1

11 1,2, ....

where \1] , .... \1/11 are given complex constants with

L and o .\" iii I.

For 11 2,3, ... , arrange the numbers (k I) Ir' Xrlrt, k L 2, ....
11, r L 2, ... , III (they are all distinct) as a (strictly) monotone increasing
sequence (T\/I));~~ , and set tAnl .~. 0, tJ/)~Hn) -+- TJ~i) (j 1,2. ... ,11//1
1), t~,}:,~ I. Observe that the definition of (Tj"l);::'~ associates with each
11 I and j I, 2, .. ., 11m a unique r, I r Ill, Given such 11 and j, usc
the corresponding r to define

II')'

11(1\"1 t:/I~)

There exists an M]] 0 (independent of j and 11) such that every tj"l
tJ~li (M]Il)-I; thus, each 1 cj"l M, M being a constant. One may verify
that. for 11 2, 3, ... , j I. 2, .... Illll,

( (II)
T, 2[1 max (.\', l'X r )] I,

I r· 111
wherc X/I i / I X\ .

.\
It is known (cf. [2, Section 2.4]) that RnU)>- Jof(x) dx for every complex

function j~ Riemann integrable on [0, I]. Hence, by Theorem 3, R Jf)
converges to f~- f(t) dt for all dominantly integrable functions(

It often takes some cffort to write a quadrature formula as

d(lI)

I dnlh(T;nJ)ui nJ tin~),
I ,

if it was not given in that form originally. This is particularly true of "Gauss­
type" quadrature formulas. The next two theorems address this problem.

DEFINITION 2. Assume the first sentence of Definition I. Let d(ll) map
the set of positive integers into itself. For 11 1,2, ... , let 11';11) (j 1, 2.....
d(l1)) be given complex numbers, and let

o
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be given reals. We assume the existence of positive constants B* and M*
such that Tjn) < B* implies

I ",(n) I
I H'J I

"'1* . ( In) In) In»)
JV" n11n TjH - Tj_1 , Tj (4)

for n 1,2,... ; j ~= 1,2,... , d(n). For n ~c 1,2, ... , consider the functional
<P" * with domain the set of all complex functions h on (0, I], defined by

<Pn*(h)

We assume, finally, that for every complex functionj, Riemann integrable 011

[0, I], <Pn*(.f)-+ f~jdg. Under these conditions we shall call (<P"*)~d a
"Q*-sequence" or a Q*-sequence corresponding to g.

THEOREM 4. Given a Q-sequence (<P")~~I corresponding to some g, it is
also a Q*-sequence corresponding to the same g, and conrersely.

The first part of the theorem is immediate: Suppose, first, we never have
(,,) (n) S t ,(Il) -- (n)( In) (n») I 2 . . - I 2 I( ') , dT j Tj-,-I' e Itj - cj t j - t j _] ,n " ... , J --- , ,.... ( n, dn

observe that, if some Tj/) is < B. then (setting T~n) ~= O. T~':~l+1 c_ I: II

J. 2.... ),

and

'I·)(n) I :::. I c,(n) I t)ln) s:,_ ~-I: ,(n)! (n) ,/ ,--1M In).
~ . ~ " 0 i (j ! 'Tj-~ a ... Ij ~

so that

1 ,In) I < ~-]M ml'n( (n) _ (n) _(71»)
I 11 ) 0 T Jq T.1_ 1 , j} _. (4a)

Whenever Tj") = Tj~i (Il ,;-: I, I < j < d(n)), we combine the two sum­
mands in (3a) corresponding to j and j + I into one, thus forming new
sequences of T'S and t's, and corresponding sequences of c's and \\,'s. For
these new T'S and w's, (4a) holds with M replaced by 2M.

Putting together Theorem 3 of [9], which gives necessary and sufficient
conditions for dominant integrability, and Theorems 3 and 4 above. we
immediately obtain

THEOREM S. (a) In order, jar a complex jzmction f on (0, I], to be such
that f~+ f (t) cit converges and, jor each Q*-sequence (<P n *)~=I corresponding
to g(r) t, <P,,*(f)~.,.. f~+f(t) dt, it is necessary that f be dominantly inte­
grable. i.e., that
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(i) f he Riemann integrable on each closed suhintenal oj (0, 1j, and

l ii) there exists a monotone nonincreasing improperly Riemanll
intcgrahfe filllction h on (0, I] such that, at each point oj lhe illtercal, h(i)
f(i) .

(b) f)ominanl integrability oj a fUl/ctioll I is sUJjicieni to guarantee iha!.
given a Q¥ -sequence (1J II *);~-1 corresponding to some g, r, f(t) (('5(1) converges
and 1J ,,"(j )-~ f~ f(l) cZr.;(t)·

[XA\I1'LL Given a, b ( C/J a /) < co), dominant integrability on
(a, b] of a complex function f wili mean dominant integrability of j(a
t(b a). The concept of a Q'-sequence carries ovcr, too. to (a. 17] with the
changes that in Definition 2, °is replaced by a, I by b, and in its fourth
sentence. 7;") is rcplaced by Tjil) a (similarly for the concept of a Q­
sequence). The analogs of Theorems I 5 also hold.

Let It·U) (I I)' (I ; t}0 where .', ~. ,U i. We ,hail

next show. as an example of the power of the above theorems, thatti)r Cl'Ci'I'

filllcrioll I dominantlv integrahle on!. I, I]. lim" d. QJ('ll')' t, I(I) £11
where. /br n 1,2.... , QII is the n-point Gauss·Jacobi quadrature j(mllula
corresponding to the II'cighlfilllctioil 11'. For 11 I, 2.... and suitable positive

0/1(/11') I 11 11 • 1.( 11(X"./) 1 /(Xn.I),
I. I

where 'Y".II X, .. II! X II ,l arc the zeros of the Jacobi polynomial
p;;,.rn Let XII.I) I. .X'"." 1 I (II 1,2, ... ). Rabinowitz showed (sec
[10]) that there exist 61 in (0, I) and (' 0 such that if, for some iI and II

(I k n). X".i, is in (I ,51' I), thcn

c(X".k·1 c min(xlI.k_J XII 1, I - X (5)

For 11 c 1.2.... , consider the functional QII(hlw) with domain the set of all
complex functions h on (-I, 1]. We show that the sequence of these fune­
tionals is a Q*-sequenee corresponding to g(t) = t. We have in (5) the desired
sort of inequality corresponding to (4) for the lI'n.I,(W(x lI • I..»-l (playing the
role of W;"), except for the "wrong" endpoint. The weight functions (1·- t)' .

(I I· t)iJ are such that, for a given 11 1.2.... , interchanging (I: and f3 replaces
each X II . k by X n . 1I11 i." and each lV lI . i. by ll'lI,n ,1 f, ([11, (4.1.3), (4.3.3) and
(3.4.8)]). Thus (On(h!w)';l will be shown to be a Q*-sequenee if we can
prove that Qn(/ill') -~ f l.((t)dt for every!, Riemann integrable Oil [--I, IJ.
Let (XU) r lll'(s)ds (~I t 1), and let ° E I.

For each function/; Riemann integrable on [ ·1, I], fll~E(lt'(t)tlf(t)
dx(t) exists and equals f;c ,/(t) dt ([7, Theorem 322.1]). Letf~ bejtimes the
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characteristic function of [-1, f, 1- f]. Now J~l (w(t))--lfc(t) ("'x(t)
(where we take (W(t»-1 to be, say, 0 at 1 and -1) exists and equals

r~€:€f(t)dt, so by Theorem 15.2.3 of [II], limn_A> Q"U:/w) = J~~~J(t) dt.
Using the first inequality in (5) and its analog for a corresponding interval
( I, -1 -j- O2), we have, if f min(01 , O2 ),

Q,,((j -- /:)/11)1 2i"f sup j(t),
-1 [',I

(Sa)

where l is a constant.
I t is now easily seen that lim,,_.", Q.,Jf/w) --~ J\}U) dt. By Theorem 5,

Q"Ui II') -;e J~1 _f (t) dt for every f dominantly integrable on ( -- I. 1].

EXAMPLE 4. We next show that if --1 'x l. 0
dominantly integrable 0/1 (-I, I], then the improper
integral J~l:f(t) d"U) cOl11wges, and equals Iim n _. u Q,,(f).

;'3 l, and iff is
Riemann- Stiefties

Using the analog of the tIrst inequality in (5) referred to in the sentence of
(Sa), and the boundedness of w(t) to the right of but near - I, it follows that,

for some constant c' 0, W",I, C' (,x",1. -- XII ,I. 11) c'min(x",I, 1-­

X",;, -I ' 1 - X",IJ, if X",I, is in (---I, --1,- O2), Thus \NC only need to know
that the Riemann-Stieltjes integral J~1 f (t) dx(t) exists and equals lim",
QIICf) for all functions .I; Riemann integrable on [-I, I], which is trcle
([7, Theorem 322.1] and [II, Theorem 15.2.3]).

A special case of Theorem 5 was treated by Miller in [8] (see his Lemma I
with T I). He obtained, in effect, for a function!, continuous in (0, I], (ii)
of Theorcm 5(a) (with h continuous on (0, 1]) a sufficient condition that,
for each (<P" *);~I in a certain class of Q*-scqucnces corresponding to g(t) I,

Wn *(f) --;e J~lf(t) dl. Our following lemma allows one to see that, as asserted,
Miller's sequences (<P"*);~1 are Q*-sequences corresponding to gO) t.

LEMMA 1. Suppose (<P" *)~d is as in Definition 2, except for the following
changes: each wj") ?: 0, get) t, and we only assume that <P n *(f) -;e J~f(t) dt
for each real function!, continuous in [0, I]. Then U!l II *)~~l is a Q*-sequence
corresponding to g(t) =- t.

(Using Lemma 1 in Example 3, it suffices there to show that Q"Ujw)-+
f 1f(t) dt for all real functions,[, continuous in [-I, I].)

2. PROOF OF THEOREMS 2 AND 4

Proof of Theorem 4. Consider a Q*-sequence. Let B min(B*, ~) and
.'v! 2M*. For n == 1,2, ... , set t~n)ccc 0, t(\~';,) I; and if I J < dIn), set
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tj") i(Tj~~ ,- Tr)) if Tj~~ 4T;"), and t)") 2T)") if Tj"i 4T)"); also set
cj")_ wj"\tJ") - If"it\ } ~cc 1,2, ... , den). Let n l. We shalI first show
that, if 1 } < den), then min{T)")(lj"1 -- t)"i)-l, H:'i - Tf:i)(tj711
tf"D-l} ~,:; 2. If 1 <} < den), we have four possibilities for Ij"l - t]"i. The
first is Tjrll 4T)~i, and T\~'i 4T]71). In this case (Tj7~ --- Tf~)I)Uj")

If"it l 2. The second is 4T;:i < Tj"l 4T)") < T)~'i. In this case
(1)")_ t)"i)-1 < ~. The third is T)~)1 4Tj"), and 4Tf"i Tj"l, in which case
Tj")(tjn) -- t)(~'it 1 1. Finally, the fourth is 4Tjll\ T;"I T;"11 4Tjl/', and
then Tj71l(tjnl If"i)-l < 2.

ff j cc 1 < den), there are two possible cases for tj 1il- ti"i:

(i)

and
ti" l --- tkil - ti" l

(ii) tj,,1 - 16")
~(Ti71) - Ti"), and so T;71)(I;") -- 1(\"1)-1

t;"1 2Tjl<}, in which case Tj'iI(tj"l -- tri")) 1

l.

Thus, if 1 } < den), and T)"1 < B, we have cj") < M. 11' T~;',~) < B ~,

then I C~'nil I I w~';~) I( 1 -- tJ7~H)-1 < 2M* M.
There is a constant 60 E (0, I) such that T,W;,) - 60 for n 1,2, For.

otherwise, we choose c E (0, 1), and a subsequence (kn)~"_l of I, 2, such
that g(c) g(I), and 0 < T~";~~) < dar n l. 2, .... Let/~ be the characteristic
function of [c, I]. Then 0 rpinUJ --+ g( I) - g(c) .•/= O. Since (2/5) Ij,,1
Tjn) if n 1 and I j d(n), we can take 6 min(2}5, 6,,). This completes
the proof of Theorem 4.

LEMMA 2. Lei 0 x I and lei ((PII)~~1 be a Q-sequence corresponding
to a junction g. We require that g is constanl on no closed (nondegenerate)
subinterval of [0, I] containing x. For each E 0 there exists an integer
n(E) ~ I such that ifn n( E), I } d(n) , I}'~i x Iin) and Tj") < B.
then I cjn) IU)") - tl1ti) < E.

Proof Suppose Lemma 2 is false. Then there exist E 0, a subsequence

(N(n»~d of I, 2, 3, ... , and points PI ' P2 ' P:l ' 0 PJ P2 P3 L PI P:J '

PI X P:J, such that, given any E1 0. if n is sufficiently large, there
exists) j(n), I j d(N(n», with I)"t)) X tj"{(II)). TjNIII)) < B,

E, and

p:;. Let

Pl,P:J p:!. (6)

We see, using (rp,,);'-l , that the characteristic function of every [a, b] [PI
E 1 , P2 El] and of every [a, b] c; [P2 El , P:l E l] has °as its Riemann
Stieltjes integral (~'5 on [0. I]. Thus g is constant on (PI' P2) and on (P2 , Pal.
Since g is continuous on [0, I], it is constant on [PI' P:l] which contains x, a
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contradiction. If PI P2 or P2 P3' the argument is essentially the same
(but simpler). This proves Lemma 2.

Suppose that g is a complex function, absolutely continuous but non­
constant on [0, I] which satisfies a Lipschitz condition on some [0, e],
o < e~ 1, and is constant on some [n:, ,8], 0 < ex <,8 < 1. Then it is not
difficult to see that (q)nr::~l is a Q-sequence corresponding to g where, for
every complex function II on (0. I].

q) ,,(II)

- I [g(,8t- j2-"(1 (3»
jccl

11 1,2,.... (Here, for 11 ~.C 1,2.... , the numbers f(\"!, f~n), ... , fJ;';1) are, respec­
tively. 0, 1 . 2-n ex, 2 . 2-n ex, ... , 2" . 2-n ex, (ex + ,8)/2, ,8, f3 + 1 . 2-"(1 - (3), ... ,
,8 --j- 2" . 2-nO ~ ,8); 0 = (ex -+ ,8)/(2,8), and B e. Thus the case excluded
in Lemma 2 can occur.

Proof of Theorem 2. As is weI: known ([7], Theorem 317) if/is Riemann­
Stieltjes integrable dg on [0, I], j and g cannot have a common point of
discontinuity there. Hence g must be continuous in [0, I]. By [7]. Theorem 335,
if g is not of bounded variation in If). 1], then there exists a function. con­
tinuous in [0, 1], which is not RiemannStieltjes integrable dg on [0, I].

Again, by [7], Theorem 322. J, if 4> is '" bsolutely continuous on [0, I]. the
Riemann-Stieltjes integral f~fd4> exists for each function f, Riemann inte­
grable on [0, I].

To see the sufficiency of absolute contilhlity on [0, 1] together with a
Lipschitz condition on some [0, e], consider any sequence (n 1,2 ) of
sums of the form L7~1 cj'l)lI(tj'd)(tj l1 l - f):D where, for 11 == I, 2 0
fJ"l < t~nl < ... < t~n) 1 and each cj'" [g(ty":) -- g(t}~m(fj"l- t/"i)-\
and where max1<:;j<:;n {fj"l - f)"i} --> O. Setting B e, we have a Q-sequence
corresponding to g.

Now we show necessity of a Lipschitz condition. Let 0 ex < ,8 < B. We
shall show that I g(,8) ~ g(ex) I M(,8- rx). Let X~.IJ be the characteristic
function of (cx, ,8), and, for l1=c I, 2, .... let fF'\ ~ cx fj;<l, fy~1) 1 ~,8 fp) .
Then n 11 n

I I cjn\a.s(T)n»(t;") -- f;n;)\
j=i/l

M(,8 - (\.)
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'1'"

We may assume 5"

(II) ,

Ii;, I!

if
(oJ

( '-, (-3), 5"T'!,.,

!
( (n)

I)f'i"

if
{II)

(3), !T (I,

Tn -f-.. 0. as othenvise

() otherwise:

() otherwise: if l, ~,." .

.1

I X ((~
, . n

By Lemma 2, there IS a closed (nondegenerate) subinterval of [0, I]
containing x or /3, over which g is constant. We may clearly assume g(3)

g«).
Lettj surtx : ,l x (3, g(x) g( Then I 'Xl 3, g(ld

g(o:). Let :x] 'I: E' f3. The set of complex numbers which are constant
values of g in closed (nondegenerate) subintervals of J (,II. IXI E') is at
most denumerable, while the image of I by g i, not. Hence. there is an "2 c I
such that g is constant Oil no closed (nondegenerate) subinterval of [0, I]
containing 1'2 .

Similarly, let (3] infIx :t] _r ,B. g(xj g(f3)). Then '-I /31 (3,
g(f3I) g(/)). Let XI ,131 -- E" /3 1 , Then, analogously. there is P2
(p] -- E", p]) such that g is constant on no closed (nondegenerate) subinterval
of [0, I] containing f32 .

Let °<:: E (f3] -- 0:1)/2, and take (' E" E. Then x, <x2 (\:1

E f31 E P2 <: (3], and by the above, g(82) g('2)1 :"vl(f32 ('11 2 ),

By continuity,

,g(,8) - g(lx)1 lvl(f3 -x.).

3. PROOF OF THEOREMS 1 AND 3

Next we prove Theorem I. Assume the conditions involving I, 81 , E, and
II1(E). Suppose we knew that (*) limt,o+ ff(l) 0. Given E 0, let Xl E (0, I)

be such that ' ff(l)1 <:: Ej2 whenever ° I Xl' and let 8 min(m(Ej2),
1- (\), X min(X], m(Ej2)). Suppose 0 fo II In 1,10 x:
f i - I Ti ti , and fi-Ifi] I -- 8, j 1,2,.",11. Set TO II), flO,

Then i I I:;'~I f(TJ{ti ' fi Il I fof{to) -- I:;iOf(Tj)(l j fi 1)
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I L:'~of(T,)(tj -- tjl)[ (E/2) < (E/2) -+- (E/2) E. Hence ([9], Defini-
tion l)fis dominantly integrable, and ([9], Theorem I) I J~: f(t) dt.

Suppose (*) is false. Choose F, one of the functions ::;::Ref,=lmf, so that,
for some positive E and some sequence (Sj)7'd with j s11s1 S2

1S2 0, each sjF(s,) E. Choose an integer N 1 I such that 2-'V '

me!). For N=Nj-i-I,N] 2, ... , set t6S1 O:tj,Y) SSj,j 1,2, ....
N - N] : and tjSI sV

t
(j-- N -+- A\) 2- N , (I - ss), j ;\1-- N] I,

;,V lV 1 2, ... , N -- JV] _1_ 2/\:1 j(lV. 1V1). Then. if iV iV1 ,

'\'---/\'1

I F(t;N»)(t;S)
'ol

and, hence.

)(J\/··\'l)

") F(tC\))(/V) _ t h »)
L- j J )--1

i]

.V-v,
I F(t\NI) I,(,V)

; 1

tCV))
i---l

1(N

:2 Sv))1

which is arbitrarily large if N is sufficiently large. This contradicts the fact
that, for every N > N] ,

Hence, (*) holds.
Now we show the nonparenthetical "only if" part of Theorem I. By

Theorem 3 of [9], f is Riemann integrable on each [a, b] C (0, I], and there
exists a function h, monotone non increasing and improperly Riemann
integrable on (0, I] such that h(t)~;: IfCt)1 throughout (0, I].

Taking an E] E (0, I) with J~~ h(St) dt < E/4, we may write the sum occurring
in (2), assuming (1), if each tJ --- t j _] is sufficiently small, as

(/1--1

I f(TJ)(t j - tj_])~- 2~ f(T,)(tj - tl])
j'--=l )oe-lit
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1

\ 11.1

II j(TJ(t; -- t;])-.I
1

j(l) dl I
I 1/ 1 .'!I. I

I: .. f j(TJ(lj
\ 1- Jl I 1

.1

.I j(t) dl I
(1 '

llil I) fl h(l)dt - Ell.

()

if each t; -- t j j is sufficiently small. So, then,

I f j(T;)(tj
1=1

.1 '

t;l) - I j(t) dt I
"O-T I

(E/2); I nfjh)(t,
/-1

Jill

(E/2) I h(OI;)(lj
1

(E/2)! 2 (I h(8t) dt E.

'n·

This completes the proof of Theorem I.

(I I f(l)1 dt
·n·

r h(t) dt
II->

LEMMA 3. II I is Rieniaml integrable 011 each [a, b] C (0. I]. alld I i is
improperly Riemann integrable on (0. I], then J~+fdg converges for all g as in
the first sentence of Definition I for which a Q-sequence corresponding to it
exists.

ProoF By Definition I, the Riemann-Stieltjes integral J:! fdg exists for
every E j .0 < E] I. We show that. given any E 0, if E] 0 is sufficiently
small, S::fdg < E for all E2 • 0 < E 2 < E]. Now (see Theorem 2), if
0< E2 < 'Ej e. we have for every partition E 2 tn < t j < ... <: t" E j •

If j(tj)(g(tJ g(tj]»1
i",=l

M being a constant ;?; O.
Thus

n

M I if(tj)! (tj - t j_1),

j~I

I.C!f(~'51 < M .C If I dt ~ M .(' If I dt-· 0,

This proves Lemma 3.

as El -;> 0-; .



QUADRATURE AND DOMINATED INTEGRAL ISl

We next prove Theorem 3. By Theorem 1, iffis not dominantly integrable.
then. for every 0,0 < 0 < I, there is a Q-sequence (<Pn)~~l corresponding to
g(t) I (each 4>n(h) being a Riemann sum) such that (<Pn(j»C;:~1 diverges.
We prove now the statement following "Conversely" in Theorem 3.

Consider a g as in the first sentence of Definition I. and a Q-sequencc
(([>n)~=I corresponding to it:

din)

I cin)h(T!n»(t;") ~ t;ni)·
jc.1

Let (Y/"J:~1 denote a (strictly) decreasing sequence with Y/l < B and limit O.
For 11. k 1.2,3,... definej(n, k) by tJ;~,k)-l Y/I. < tJ;:!,k)' By Theorems 3
and I of [9J, and by Lemma 3 above, f~jJdg converges. For n, k == 1,2.... ,
with XSr".1 denoting the characteristic function of [OY/k, 11, we have:

din)

L cin)f(T~n»(I,(n)_ I;n;)[

'I

i ("'/dg I
! ~ 0+

, ,I

I I f(Z~
~' OJ1k

din)

'\ ',(n) /. , (_(n),)!( ,(n»(I,,(',) _ 1(11»/L () X\)l)f..,l I) .' T; / )--1
i-I

;(n.l.) I

L C;n)f(T;',»(I~T!)- I;";r.
i'--1

o
where Lj~I O.

Let E O. If k is sufficiently large, and 11 I, then

I ('11./ dg I E/3.
~'O I

and

,(n,k) ]

I C;")(T;n»(t;/) -- tin;)
; I

;(11.1.) - 1

M I l(8ti"»(t~") - Ii";)
; 1

M ("/(81) dl E/3.
'0

where /(1) ~= SUPt<x<l I f(x)1 ,0 < t 1 (see Corollary 2 of [91, and the first
sentence of its proof). For each fixed k I, if J1 is sufficiently large,

E/3,

from Definition I. Theorem 3 is now established.
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We conclude with a proof of Lemma I. Let.l be a real function. Riemann
integrable on [0. 1]. For each positive integer 1Jl. let (;,,, and II", be step
functions on [0. I] satisfying there 0'", r II,,, . and such that n, 0'", dt

(1/11I) ,nJd/ J~ H", dt i (11m), For iii 1,2..... there 'exist red
functions gil, and h", . each continuous on [0, I], satisfying there ~." (;"

J'I rl . I . ,,1 "1h". flu,. "g,,,dt ,,,el,,,({ 11,'111). and ,,,h,,,dl J(,1I,,,dt (I ill).

Thus. for iii I. 2,

(2;111)
.1

I glil ell
• 0

lim <1)" '( gu,l lim <1),,'(/)
11 ·.f

lim ([),,'(h,.,)
/I

,C h", dt
,II fdl

'0

12/11).

Hence lim" f (P" *(1) J~.ldl. This clearly implies that (I)" *(/) • JiJdt
whenever! IS a complex function. Riemann integrabie on [0. I].
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