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1. INTRODUCTION, STATEMENT OF THEOREMS, AND EXAMPLES

The main purpose of this article is to show that the dominated integral
introduced in [9] is a natural and powerful tool in the study of the application
of quadrature formulas to the numerical evaluation of improper Riemann
integrals. More accurately, we show that a function f on (0, I] is dominantly
integrable if and only if every sequence of quadrature formulas, of some
reasonable, natural form, when applied to f, converges to (the improper
Riemann integral) ijf(r) dt. The types of sequences of quadrature formulas
which we shall treat in examples include all sequences of compound rules on
[0. I] not involving f(0), and integrating | exactly, and sequences of n-point
Gauss-type quadrature formulas, for i == I, 2..... This article was stimulated
by the work of Davis and Rabinowitz [1], who showed that quadrature
formulas whose use can be justified for the evaluation of proper Riemann
integrals can be sometimes also used for the evaluation of improper Riemann
integrals. Work in this area was continued by other authors (cf. [3, 4, 8, 10]).

By Theorem 3 of [9] a number of properties are equivalent to dominant
integrability. Perhaps the simplest of these equivalences is that f'is dominantly
integrable if and only if /' is Riemann integrable on each [a, ] C (0, 1], and
there exists a function /, monotone nonincreasing and improperly Riemann
integrable on (0, 1] such that A(t)} > | f(r)| throughout (0, |]. Theorem I
below gives yet another property equivalent to dominant integrability, one
which is useful in the numerical evaluation of f(lnf(t)a’r, the improper
Riemann integral of fon (0, 1].
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Let 0 « 6 < l.and let # be & positive integer. Let / be a complex function
on (0, I]. We shall often consider sums

K

SIEa ),

where

and (1
max(/; , . dt;) 7 . g2

THEOREM 1. A complex function { on (0, 1] is dominantly integrable if and
only if there exisis a complex number I such that for each 6.0 <& <2 | (or for
some fixed 6, .0 <7 8, <2 1) and each ¢ - O there exists an m  m(d. €) 0
(an m - mte) - 0) such that

"

3‘/ X At 1 1){ CL€ (

il

2
~—

whenever (1) holds (whenever (1) holds with &, replacing &) and each
- - . 1 .
t 1.y <= m. Further, such an I is necessarily [y f(1) d1.

]

Exampre . Let f be a complex function on (0. 1]. and let 0 < 6 -
Let (R.(f)),_, be a sequence of Riemann sums:

RASY Y =™
i1

where 0 </ o Lo forn 1,200
!’ilp Il‘ﬂz,_ixn(l‘;") 17y 0 and max(r!”) L ory o2
forj - 1. 2....n and n [,2,.... Then
lim R,(f) - j’l fir) dt (3

i

if fis dominantly integrable. In particular, for such an f.

“n] (], i‘/' (I - (!”,2))) E ’Q] f()‘) (/[

Hest A i 1 EM
By Example 2 below, if (R,(f)),_, is any sequence of compound rules on
[0, 1] not involving £(0), and integrating 1 exactly, we have (3) whenever fis
dominantly integrable. Also we shall discuss. for suitable functions g.

formulas R, for which R (f)— f:,,f_/'(/g, the improper Riemann—Stieltjes
integral of fdg. whenever fis dominantly integrable.
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DeriniTioN 1. Let g be a fixed complex function on [0, 1], bounded but
not constant there, having the property that Riemann-Stieltjes integral
f(l,fdg exists for every complex function /. Riemann integrable on [0, I].!
Let 8,0 <2 8 < I, be fixed, and let d(n) map the set of positive integers into
itsell. For - 1,2, let ¢4, 7 1, 2...., d(n), be given complex numbers.
and et (Y7 (j = 0.l dm)y and 7 ¢~ 1.2 dm) be given reals
satisfying

(n)
() [0') - rfN) N o fﬁ?;) I:
and

b Joee 20 dtn).

) g, () ) .
max(r/ 81y <2

We also assume the existence of positive constants B - | and M such that
7" < B implies | ¢ << M, for n == 1,2,....7 = 1,2.....dn). For n - 1.
2...., consider the function @, with domain the set of all complex functions /2
on (0, 1]. defined for every such /1 by

daln)
D) = Y e ), (3a)

=1

We assume, finally, that for every complex function /. Riemann integrable
on [0, 1], D(f) — f(l,fdg. Under the above conditions we shall call (D,)7 ,
a “‘Q-sequence” (Q for “quadrature”) or a Q-sequence corresponding to g.

THEOREM 2. A necessary (sufficient) condition for the existence of a Q-
sequence corresponding to a given complex function g as in the first sentence of
Definition | is that g be continuous and of bounded variation on [0, 1] (be
absolutely continuous on [0, 1)), and satisfy a Lipschitz condition on some
[0,01.0 <67 1.

THEOREM 3. A complex function [ on (0, 1] is dominantly integrable if
~L A -
for f(x) dx converges, and, for each Q-sequence (®,)._, corresponding 1o
. 1 [P . .
gty 1, D(f) converges to [,. f(t)dt. Conversely, if [ is dominantly inte-
grable, then, for each g as in the first sentence of Definition 1, and, for each
o . . 1
O-sequence (D), _, corresponding to it. [, f(t) dg(t) converges. and

D) [ 10 datr).

{

1A

A necessary (sufficient) condition for ¢ to have this property is that g be continuous
and of bounded variation on {0, 1} (be absolutely continuous on [0, 1]). Cf. the proof of
Theorem 2.
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ExXAMPLE 2. Suppose (R, (f)),_; is a sequence of compound rules on
[0, 1] not involving f(0), and integrating | exactly, namely,

n te
R.(f) }: Z Wit (k Dat o xul), " Lo
Joosl p=1
where wy ..... w,, are given complex constants with
i
>owpoo L and 0 x, o, L
i

For n  2.3...., arrange the numbers (K -~ 1)n=! -+ xut, h = 1.2,
n,r =1, 2., m (they are all distinct) as a (strictly) monotone increasing

m

sequence (7\"))/ , and set 1§ = 0,1/ - K™ 70N 1 2 nm -

1

D).t - 1. Observe that the definition of (7{")}" associates with each

iy

a > 1and j— 1.2,....nm a unique r. | < r <7 . Given such # and J. use
the corresponding r to define

Ly

j (1o oy

There exists an M;' - 0 (independent of ; and n) such that every /(" -

11" = (M)~ thus, each | ¢ < M, M being a constant. One may verify
that, forn = 2, 3....,j == 1. 2., nm,
e AT LU S | [max (x, RIS where v, | AV
R 11

It is known (cf. [2, Section 2.4]) that R,(f) - J“I,f(x) dx for every complex
function /. Riemann integrable on [0, 1]. Hence, by Theorem 3, R,(f)
converges to Ll,‘ (1) dt for all dominantly integrable functions f.

[t often takes some cffort to write a quadrature formula as

dln) o ‘ )
}: (,/_n /I(T,-,I'))(f;,‘) . ,‘;('n]),

b

if it was not given in that form originally. This is particularly true of ““Gauss-
type” quadrature formulas. The next two theorems address this problem.

DErFINITION 2. Assume the first sentence of Definition [. Let d(n) map
the set of positive integers into itself. For n - 1,2, let wi (; - 1,2...
d(m)) be given complex numbers, and let

0 (n) (n} (n) I )
To Ty Tiln) Tan) o1
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be given reals. We assume the existence of positive constants B* and M*
such that (" < B* implies

Lwi™ | < MF min( — 20 ) )
for m -~ 1,2,...; j=1,2,...,dn). For n = 1,2,..., consider the functional
@, * with domain the set of all complex functions /1 on (0, 1], defined by

din)

D,*h) Sow ")/1( (y,

J=1

We assume, finally, that for every complex function f, Riemann integrable on
[0, 1], D, %) — _[éfdg. Under these conditions we shall call (©,%)% , a
“Q*-sequence” or a Q*-sequence corresponding to g.

THEOREM 4. Given a Q-sequence (D)5, corresponding to some g, i is
also a Q*-sequence corresponding to the same g, and conversely.

The first part of the theorem is immediate: Suppose, first, we never have

7 s T Set wit = c"”(l‘"’ 1", n= 1,2, j=1,2,...dm, and
observe that, if some 7{" is < B, then (setting r{" =0, 75} ., = lin -
2.,

e T ) < M - ),
and

“]n)l |C]n) 1 t(w) < 8A " (n) \[ Tj(_n) - 8«1AMT§71);
so that

¥
Pwi® | < 87IM min(=, — 7%, <0y, (4a)
Whenever 71 = v{") (n = 1, | <{j < d(n)), we combine the two sum-

mands in (3a) corresponding to j and j -+ 1 into one, thus forming new
sequences of 7’s and ¢t’s, and corresponding sequences of ¢’s and w's. For
these new 7’s and w’s, (4a) holds with M replaced by 2M.

Putting together Theorem 3 of [9], which gives necessary and sufficient
conditions for dominant integrability, and Theorems 3 and 4 above, we
immediately obtain

THEOREM 5. (a) In order, for a complex function f on (0, 1], to be such
that fu} (1) dt converges and, for each Q*-sequence (D,*)7_, corresponding

1o glt) - t, D, *(f)—> _[Okf(t) dt, it is necessary that f be dominantly inte-
arable, i.e., that



144 0SGOOD AND SHISHA

(1) [ be Riemann integrable on each closed subinterval of (0, 1], and
(1) there exists a monotone nonincreasing improperly  Riemain
integrable funcrion i on (0, 1] such that, at each point of ihe interval, hir)
Sy
{b)  Dominant integrability of ua function [ is sufficicni to guarantee ihai,
given a Q*-sequence (D, )| corresponding to some g. f‘], f)yde(t) converges
and @,y - f:, Fie) de(ry.

Exaverr 3. Givena, b (—o < a - b <2 oo0), dominant integrability on
(a, b] of a complex function f will mean dominant integrability of f(a
1th - a)). The concept of u Q-sequence carries over, too. to (. bj with the
changes that in Definition 2, 0 is replaced by a, 1 by b, and in its fourth
sentence. 71" is replaced by " -« (similarly for the concept of a Q-
sequence). The analogs of Thwrems 15 also hold.

Let wiry 8 =y 4l 1 where T S | . We shalt
next show. as an cxamplc Ui tlm power ot the above theorems, tha{ h)r erery
Junction f. (/()1;1111(1/71/1 integrable on -1, 1. im,, ., Q {fhv) - f LSy di
where, for n - o @, is the n-point (;alm -Jacobi quadrature /()rmu/a
corresponding to I/i(’ uetg/n‘/un( tion w. Forn - 1, 2., and suitable positive
W

(.)n(./"“') }_‘ Wo (”( n.k ) f(\n/
f
where v, , <o X, + 0 <0 x, are the zeros of the Jacobi polynomial
PO et x,, 1ox,, 1 P 1.2..). Rabinowitz showed (sce

[10]) that there exist 6, in (0, 1) and ¢ - O such that if, for some » and 4
{1 -k n).x, . isin(l  &,.1), then

”.iz,v""(]w-\‘n,/.‘)) b C(X)z./x——l - -\-n./c) s C n]in(xn,/.‘ﬂl = N - '\‘.u“l'»‘)' (5)

For i - 1. 2...., consider the functional Q,(/#/w) with domain the set of all
complex functions /# on (—1, 1]. We show that the sequence of these func-
tionals is a O*-sequence corresponding to g(t) = t. We l*'wc in (5) the desired
sort of inequality corresponding to (4) for the w, Gv(x, )7t (playing the
role of wi™), except for the “wrong” endpoint. The welght functxons(l — )
(1 -I- £)? are such that, for a given » 1, 2...., interchanging « and 5 replaces
cach x, . by X, .5 ».and cach w, ;. by w, .o (11, (4.1.3), (4.3.3) and
(3.4.8)]). Thus (Q,(hw));_., will be shown to be a Q*-sequence if we can
prove that Q,(fiw) — f] 1 F(t) dt for every f, Riemann imenrablc on [—1.1].

Let «(t) =- fflw(s) ds (—1 = ¢t = 1), and let 0 < ¢ - ‘l
For each function f, Riemann integrable on [--1 l] f L el fie)

di(t) exists and equals ‘[I'f(_/'(f) di ([7, Theorem 322.1]). Let 7. be ftimes the
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characteristic function of [—I + ¢ 1 —€]. Now fil(w(z))“lﬂ(i‘) dx(t)
(where we take (w(#))™! to be, say, 0 at 1 and —1) exists and equals
l;eef(t) dt, so by Theorem 15.2.3 of [I1], lim,.. Q,(f/w) = l_:ff(r) dt.
Using the first inequality in (5) and its analog for a corresponding interval

(—1, —1 +8,), we have, if € <X min(3, , 8,),

Q.(f — Johw) < 2ée sup  fir), (5a)
—1 rel
where ¢ is a constant.
It is now easily seen that lim,., Q.(fjw) = ﬂ_lf(f) dt. By Theorem 3,
O fiw) -~ fl f(t) dt for every fdominantly integrable on (—1, 1].

EXAMPLE 4. We next show that if —4 <t w03 0 8= b and if fis
dominantly integrable on (-1, 1], then the improper Riemann-Stieltjes
. 1 o .
integral LH 11y d(t) converges, and equals lim,,_., O,(f).

Using the analog of the first inequality in (3) referred to 1n the sentence of
(5a), and the boundedness of w(#) to the right of but near — I, it follows that,
for some constant ¢ =0, w, . =0 (X, — X, ) ss ¢ min(x, o, —
Npioq - Lo X)), iE X, s in (—1, —1 - 8,). Thus we only need to know
that the Riemann-Stieltjes integral j‘fl_f(’l) dx(t) cxists and cquals lim,, .,
0,(f) for all functions f, Riecmann integrable on [—1, 1]. which is true
([7. Theorem 322.1] and {11, Theorem 15.2.3]).

A special case of Theorem 5 was treated by Miller in [8] (see his Lemma |
with T -: 1). He obtained. in cffect, for a function £, continuous in (0, 11, (ii)
of Theorem S(a) (with # continuous on (0, 1]) a sufficient condition that,
for each (@, )r_; in a certain class of Q*-sequences corresponding to g(f) == f,
D)~ ﬁ,,,vf(t) dr. Our following lemma allows one to see that, as asserted,
Miller’s sequences (D, *);_, are Q*-sequences corresponding to g(r) = f.

LEMMA 1. Suppose (D,%)7_, is as in Definition 2, except for the folllowing
changes: each w" =0, (1) == 1, and we only assume that D, *(f) — [, f(1) dt
Jfor each real function f, continuous in [0, 1]. Then (D, %), | is a Q*-sequence

corresponding to g(t) == 1.

(Using Lemma | in Example 3, it suffices there to show that Q,(//w) —
ﬁlf('f) dt for all real functions f. continuous in [—1, 1].)

2. PrRoOOF OF THEOREMS 2 AND 4

Proof of Theorem 4. Consider a Q*-sequence. Let B - min(B*, 1) and

B

M =2M* Forn=1,2...set t§7 =0, 13}, - 1y and if | < j < d(n), set
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I}(_'n) . ]( (n) - 7_](_71)) it 57;)1 < 4 (n) and ,(n) = D (72) if 71(1”1 - 4t (”) : also set
o™ ﬁ”'(r}'“ — " e, 2, d(n). Let n 2= 1. We shall ﬁrst show
that, if [ =< j < dn), then mm{rj‘-“’ 0 — z‘”{) L@ = My -
P = 201 | << j < d(n), we have four pOSSlblhtlEb for ¢ — 7”” The
first is 7\ <47, and 7V} << 470 In this case (77 — ‘”’ Al

1My .= 2. The eccond is 47" < 7"” < drl <o M n this case i
(£ — "' < 3. The third is 7$%) > 47 and 47"} > 7 in which case
i@ iy v <)\ 1. Finally, the fourth is 47"} < 700 = 7" < 4700 and
()¢ (n) (n)y-1 -
then 7{(¢#i" — ;™)1 < 2.
If j == | < d(n), there are two possible cases for (" - ¢"]:

() 0P = 1§ AP — ), and so w{UP - 1yt

and (i) - g§0 s == 270 in which case T{(r") — 1) =s L
Thus, if 1 = / < d(n), and 7" <C B, we have | cﬂ’” < M Af Ty, << B =l 4.
(ny (n) (n) -1 o g—
then | ¢y, | = | wain W — a7t < 2M 1/1.

There is a constant 3, € (0, 1) such that =), > &, for n - 1, 2,.... For.
otherwise, we choose ¢ (0, 1), and a subsequence (k,),_, of 1,2.... such
that g(c) 7 g(1), and 0 < Tiﬁl)ﬂ, < cforn - 1,2,.. Letf. be the characteristic
function of [c, 1]. Then 0= @] (f.) — g(1) — gl¢) = 0. Since (2/5) 1" -
7™ ifn 2= Tand 1 < j < d(n), we can take & —- min(2/5, §,). This completes
the proof of Theorem 4.

LEmMA 2. Ler O = N and let (P,);_, be a Q-sequence corresponding
to a function g. We requtre that g is constant on no closed (nondegenerate)
subinterval of [0, 1] containing x. For each € > O there exists an integer
n(e) =1 such that if n > n(e), 1 - j=<"dn), 1" < x < 1! and 7\ < B.
then | ¢ |(+10 — 1/1)) < e.

Proof. Suppose Lemma 2 is false. Then there exist € = 0, a subsequence
(Nm)7Z_yof 1,2, 3,...,and points py . po . s O <o py =0 py v py =0 Lopy < py .
P15 x < py, such that, given any ¢ > 0, if n is sufficiently large, there

exists j == j(n), 1 = j < d{N(n)), with 15" 0y <l VoD _pANo o B

(’\’(n)

(N(n)) | (I;N(n)) o (N(w))) e and dele — g 3

‘ ¢ Iiq

[P — TN py — (VU [} <T €. Suppose py << p, < p; . Let

0 <le =< dminipy — pr.py o pol (6}

We see, using (@,);,_; , that the characteristic function of every [a, b] | p,
€. ps — & and of every [a, b] C[p, ' €, py — €] has 0 as its Riemann
Stieltjes integral dg on [0, 1]. Thus g is constant on (p, , ps) and on ( p,, py).
Since g is continuous on [0, 1], it is constant on [ p, ., py] which contains x, a
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contradiction. If p; : - p, or p, = p;, the argument is essentially the same
{but simpler). This proves Lemma 2.

Suppose that g is a complex function, absolutely continuous but non-
constant on {0, I] which satisfies a Lipschitz condition on some [0, 6],
0 < 6 < 1, and is constant on some [, 8], 0 << oo << 8 < . Then it is not
difficult to see that (@,),_, is a Q-sequence corresponding to g where, for
every complex function / on (0, I],

D (h) - Z [2(j2 "a) — g((j — 1) 2 ")) h(j2*“a)§

=Y g8 2 - B)

—gB = — D27 — KB 27 — B)),

n = 1, 2,.... (Here, for n == 1, 2...., the numbers ", t{™,... 1}2‘7’2, are, respec-
tively, 0, 1 - 2770, 2 - 20, 2% - 2"y, (o = B2, By B+ 1 - 2-%(1 — B),...

B 4-2"-27(1 — B); 8 = (« + P)(2B), and B = 6. Thus the case excluded
in Lemma 2 can occur.

Proof of Theorem 2. As is well known ([7], Theorem 317) if fis Riemann-—
Stieltjes integrable dg on [0, 1], f and g cannot have a common point of
discontinuity there. Hence g must be continuous in [0, 1]. By [7]. Theorem 335,
if g is not of bounded variation in |9, 1], then there exists a function, con-
tinuous in [0, 1], which is not Riemann--Stieltjes integrable dg on [0, 1].

Again, by [7], Theorem 322.1, if ¢ is zbsolutely continuous on [0, 1], the
Riemann-Stieltjes integral f(l,fdgﬁ exists for each function f, Riemann inte-
grable on [0, 1].

To see the sufficiency of absolute continuity on [0, 1] together with a
Lipschitz condition on some [0, 8], consider any sequence (n - ...) of
sums of the form X, cih(r™)(tim — 1)) where, for n = 1, 7 ..... 0:-
fé”) < tl(n) < < lr(:n) -1 and each C(n) - [g(r(n\ . g( (71) ](t(n) — I(”))fl
and where max, <<, {r{® — 1} — 0. Settmg B == 6, we have a Q-sequence
corresponding to g.

Now we show necessity of a Lipschitz condition. Let 0 < « < 8 < B. We
shall show that | g(8) — g(a)| <= M(B — ). Let y, be the characteristic
function of («, B), and, for n = 1. 2,.... let If”f ot < Bt
Then * o "

nmﬁ:lZd%u#%Wf”W CMQB— ) S, T,

=,
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where
() 0 (n} |
Sy i i)
I {n) P N . .
it 77 = (W) S, 0 otherwise;
(n) (n) (n)
l” /” 1 (’,/n - 1)

s {1) Y- .
it 7 e B, T, - Ootherwise: o L 2.
We may assume S, - 7, »> 0. as otherwise

C o | ‘
cglB) — gl ‘ vy e im 1 Dy, ) M(B ).

AR

By Lemma 2. there is a closed (nondegenerate) subinterval of 10, 1]
containing ~ or 3, over which g is constant. We may clearly assume g(8)
gln).

Let wy =supix: o x <28, g(x) gl Then v o o <05, gly)
gla). Let oy <2 % + € = . The set of complex numbers which are constant
values of g in closed (nondegenerate) subintervals of 7 (v .o - €'} is at
most denumerable, while the image of 7 by # 1s not. Hence, there is an «, ¢ /
such that g is constant on no closed (nondegenerate) subinterval of [0, 1]
containing «, .

Simila"ly, let B, inf{x:x <<y Boglxy o gp)). Then ~ < By < B,

g(By) == & /3 Let x, By — € -2 B;. Then, analogously, there is f,c
([)1 -- €", B1) such that g is constant on no closed (nondegenerate) subinterval
of {0, l] containing S, .

Let 0«2 e <2 (B, — oy)/2, and take ¢ € -=e Then x; < xy Ty -

€ <L By ~ e <, < B, and by the above, ! B) gl T M(By - ).
By continuity,

ce(B) — gl T gBy) — glag) = M(By — xg) o M(B — ).

3. PrROOF OF THEOREMS 1 AND 3

Next we prove Theorem 1. Assume the conditions involving 7, 8, , ¢, and
m(e). Suppose we knew that (*) im, ., rf(t) 0. Given € .~ 0, let y; €(0, )
be such that ' (1) << /2 whenever 0 <7 f << y, . and let 3 -= min(m(e/2),

o8y v == min(y, . mi(e 2)) Suppose O <1, <7t <1 <l L, Ity < x;
1y o Ty Q t;, and ;7 e 1 -5, !. 2...,,11. Set 7y ~ty, 1. O
Then |73, flzt; — 1, 1) Lot f ) — 250/t 1)
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1Y S — 1 DL (€]2) < (e/2) +(€/2) - €. Hence ([9], Defini-
tion 1) /'is dominantly integrable, and ([9], Theorem Di-= j(l, f(t)dr.

Suppose (*) is false. Choose F, one of the functions ——Ref, —Imf, so that,
for some positive € and some sequence (s;)7; with é T8y e S 8y
Lsy =0 = 0, each s; F(v) 2 €. Choose an integer N, = | such that 2=t =
m(iy., For N =N, -1, Ny -~2.. set 1§¥ :=0: rj.” Sxoiaf o L2
N — Ny rand £V s,\,l (= N4 N)2N (L —sy), j N — Ny =1,
NN 2N — N 2N (/\’. Ny Then it N oo N

[’(\:'V’) (N ()0, R My )W)

- - (N (N N ; N

> F(um0e™ — o 1)J Z F(r;7 '), i)
J

N Dy N ( )
ORI Ny Z CEUYY Y LW Ny e

Je=l i1
and, hence.

JIN.NY

~ NIy AN) (\)
- 1‘((/ )(1) )
i

2 — sy) [—Z Flsy, -2 =1 —jp2™1 - .v\,,))’ N - N e
j=1 .

which 1s arpitrarily large if N is sufficiently large. This contradicts the fact
that, for every N > N, ,

RN o :
] . }-‘ _f(fj‘\))('fj:\/) N )

Je1

Hence, (*) holds.

Now we show the nonparenthetical “only if” part of Theorem 1. By
Theorem 3 of [9], fis Riemann integrable on each [a, b] C (0, 1], and there
exists a function £, monotone nonincreasing and improperly Riemann
integrabie on (0, 1] such that /i(z) == | f(¢)| throughout (0, 1].

Taking an ¢, €(0, 1) with fo+ h(81) dt < /4, we may write the sum occurring
in (2), assuming (1), if each ¢, — #,_; is sufficiently small, as

ny;—1 n
Y S — 1) - Yt — 1)

J=1 J=ony

where T -1 <€, << fo, s 1 <2 ny < n.
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Now

’:Z Sl — f_,-,q):

1 / 1y

~ 1
— J’ Sy di '

i

H— ¥
J; YoM ) e, — ) [ S

Ser) -1 Melt,, — 1, 1) - JO hrydi - €2,
if each ¢, ~ ;. is sufficiently small. So, then,
} ;_/(T_;)(f,- - i) J;}lr fle) dr !
nel

Yo | [ e

i1

(€/2) -

ni- b ot

(€)Y Mo, ) | hwd
0=

e 2 HEndr - e

0

This completes the proof of Theorem f.

LEMMA 3. If f is Riemann integrable on each la, b]C (0, 1], and [ | is
improperly Riemann integrable on (0, 1], then f(l,,kf dg converges for all g as in
the first sentence of Definition 1 for which a Q-sequence corresponding to it
exists.

Proof. By Definition 1, the Riemann-Stieltjes integral Ll] fdg exists for
every ¢; , 0 < ¢ < 1. We show that, given any € > 0, if ¢, > 0 is sufficiently
small, }f:lfdg i < e for all e5, 0 < €, << ¢. Now (see Theorem 2). if
0 < e, < ¢ = 8, we have for every partition e, - fy, <<ty << 0 <1, =€),

XA - gt )| < MY LA — 1),

M being a constant == 0.
Thus

[ o [ o

o

| 11 dt — 0, as € — 0-1.

This proves Lemma 3.
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We next prove Theorem 3. By Theorem 1, if fis not dominantly integrable.
then, for every 8,0 < 8 < 1, there is a Q-sequence (@,,);_, corresponding to
g(t) . t(each @,(h) being a Riemann sum) such that (@,(f));_, diverges.
We prove now the statement following “Conversely” in Theorem 3.

Consider a g as in the first sentence of Definition I. and a Q-sequence
(D,)r_, corresponding to it:

d(n)

(pn’(h) Z (n)/l( 1:1) (n) ,7n)1)

=1

Let ()., denote a (strictly) decreasing sequence with 5, << B and limit O.
For n. k = 1, 2, 3,... define j(n, k) by 15t} 1,1 << mu < t}0) 4y . By Theorems 3
and | of [9], and by Lemma 3 above, fm.f dg converges. Forn, k = 1,2,...,
with x5, 1 denoting the characteristic function of [d7,., 1], we have:

a(n)

Y|
,‘ Af‘(/fl B Z (n)f( (n))(r(n - J(n)]

L] Fol

dfn)

“ (n) (ndy gy lady,,(n) (n)
f (/g - Z Cj " Ovu,l(TIH )Af(T)'" )(ffn - ’f‘nl
LS

8

LB

N

/c/g‘

04

HENONS] () ( ) )
Z : ('j”'f(Tj”))(ffn ="
7=-1
where Z(j’t, == 0,
Let e == 0. If & is sufficiently large, and » 2= |, then

By

‘ fdg

0

€/3,

and
il k) il 1) -1

T I T W LY U

il il

M St dr < e,
Jo
where f(1) == sup,cpcy | f(X)], 0 < ¢ << 1 (see Corollary 2 of [9], and the first
sentence of its proof). For each fixed k == 1, if n is sufficiently large,

ain)

| fdg — Z "(")Ymu I(T(n)) )('(T(n )(r,(”) | e,

< Any

from Definition |. Theorem 3 is now established.
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We conclude with a proof of Lemma 1. Let f be a real function. Riemann
mtegrable on [0, I]. For each positive integer m, let G,, and H,, be step
functions on {0, I] satistying there &, = /= H,, . and such that f:, G, dr
(Lim) - l‘], fdi jtl, H, df-i (1jm). For m 1,2..... there ecxist real
functions g,, and 4, . each continuous on [V, 1], satisfying there ¢, - G, .
b, H, . J"l, @, dt - [(], G, dr (V). and l,], h,, dt ﬁ H, di — (1.m).

Thus, for i b2,

.1 N o
‘ Sdros (2im) , g, dl o !lim D, g, !‘ifr/i D) im0

co w4 ! RN

.1 1
lim @, ~(h,,) ’ h,, dt fdi - (20m).

by 0

Hence lim, , @,*(f) '*]'(1]_/'(/1. This clearly implies that @,*(f) »J'f,./ dr
whenever {is a complex function. Riemann integrabie on [0, 1].
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